CRYSTAL STRUCTURE OF A FUSED CYCLOHEXANE WITH AN AXIAL $t-B U T Y L$ GROUP: $8 \beta-t$-BUTYL-trans-DECAHYDROQUI NOLINE
Karl D. Hargrave and Ernest L. Eliel*
William R. Kenan, Jr. Laboratories of Chemistry University of North Carolina, Chapel Hill, N.C. 27514 USA

Summary: 8p-t-Butyl-trans-decahydroquinoline picrate crystallizes as a double chair with an axial t-butyl group. Except for a 16.2° torsion of the t-butyl group away from the staggered conformation, the molecule displays only minor conformational deformations.

A t-butyl group substituted on a cyclohexane ring tends to avoid the axial position and thus serves as a "holding group" for the cyclohexane chair, preventing ring reversal. The first cyclohexane with a potentially axial t-butyl group - trans-1,3-di-t-butylcyclohexane was synthesized in $1960,^{2}$ but this species, ${ }^{3}$ as well as the corresponding cis-1,4-di-tbuty 3,4 and cis, trans-1,3,5-tri-t-butyl ${ }^{5}$ analogs appear to exist predominantly in the twist-boat form. A twist-boat was also originally assumed for the cis-1,2-di-t-butylcyclohexane, ${ }^{6}$ but later work ${ }^{7}$ suggests that this compound in fact exists as a chair with one axial t-butyl. The first reported axial t-butyl group is the one in cis-2-alkyl-5-t-butyl-1,3dioxane (2 alkyl group Me, Et, $i-\operatorname{Pr}$ or $t-B u$), ${ }^{8}$ but this case is anomalous in that the t-butyl group is syn-axial with two lone pairs of electrons rather than with two axial hydrogen atoms. traris-1,2-Di-t-butylcyclohexane and the corresponding $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ Me substituted compounds in solution appear to be mixtures of diaxially substituted chairs and twistboats; ${ }^{7}$ the compound with two $\mathrm{CMe}_{2} \mathrm{CO}_{2} \mathrm{Me}$ groups exists as a diaxially substituted flattened chair in the crystalline state. ${ }^{9}$ A crystal structure determination has also been carried out of a 2 -t-butyl-l-alkylidenecyclohexane, ${ }^{10}$ in which the t-butyl group is axial because of $A^{(1,3)}$ stra1n.

To the best of our knowledge, no structure determination has yet been performed on a fully saturated cyclohexane with an axial t-butyl group. Recently we have synthesized ${ }^{11}$ such a structure in $8 \beta-t$-butyl-trans-decahydroquinoline (1). In relation to the argument concerning the position of the lone pair in this compound, ${ }^{11}$ it was important to be sure that 1 in fact exists in a chair form. This appeared plausible from the ${ }^{13} \mathrm{C}$ NMR data obtained; ${ }^{11}$ it has now been confirmed by X-ray structure analysis of the corresponding picrate (l. HPic). (Since vide infra - the salt exists as an only slightly distorted chair, the chair conformation may, a fortioni, be assumed for the free base.)

Crystal Data: $C_{19} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}, M=424.45$, Monoclinic, $\underline{a}=9.241(4), \underline{b}=10.484(6), \underline{c}=22.584(9) \AA$,

 $\ell \neq 2 \underline{n}$, Ok0 when $\underline{k} \neq 2 \underline{n}$.
Crystallographic Measurements: A single crystal of dimensions ca. $0.16 \times 0.21 \times 0.88 \mathrm{~mm}$ was oriented on a Picker four-circle diffractometer equipped with graphite monochromater (Mo- K_{α} radiation; 1° take-off angle). Refined unit-cell parameters were obtained by least-squares treatment of the $2 \theta, \chi$ and ϕ angles for 12 accurately centered high order reflections widely separated in reciprocal space. Intensities for 4692 unique reflections having $3^{\circ}<2 \theta<55^{\circ}$ were collected by the $\theta-2 \theta$ scanning technique. The data reduction procedure of Corfield et al. 12 was followed, yielding 2122 reflections used in the structure analysis.

Structure Analysis: The structure was solved by direct phase-determining methods with the MULTAN 76 series of programs ${ }^{13}$ and 350 reflections. The E-map based on that set of phases having the lowest R and one of the highest absolute figures of merit revealed the positions of all the non-hydrogen atoms. Atomic positions 14 and non-hydrogen-atom anisotropic thermal parameters ${ }^{14}$ were refined by full-matrix least-square calculations to convergence at $R 0.057$ $\left(R=\Sigma| | F_{0}\left|-\left|F_{\mathrm{C}}\right|\right| / \Sigma\left|F_{0}\right|\right)$. Bond lengths (\AA) and valency angles $\left({ }^{\circ}\right)$ and torsional angles ${ }^{\circ}$) for ${\underset{\sim}{l}}^{\circ} . \mathrm{HPic}$ are shown in Figs. 1 and 2, respectively; e.s.d.'s for the bond lengths are shown in parentheses, those for the valency and torsional angles are in the range $0.3-0.4^{\circ}$. Discussion: The A ring of $\underset{\sim}{1}$. HPic is clearly in the chair form with axial t-butyl; the overall distortion of this ring is surprisingly small. The mean endocyclic torsion angle in the A ring, 54.6° is intemediate between that (53.0 $)$ of the more flattened chair predicted by empirical force field calculation (SFF) for axial t-butylcyclohexane ${ }^{15}$ and the more normal value of 55.9° for cyclohexane. 16 Flattening may be restrained by the adjacent trans-fused Bring.

In order to minimize severe non-bonded interactions between the t-butyl group and the axial hydrogens on $N(1), C(6)$ and $C(10)$, the t-butyl substituent deviates from a perfectly staggered arrangement relative to the ring (Fig. 3) exhibiting a twist of 16.2°. This value agrees perfectly with the corresponding twist of 16.3° calculated (SFF) ${ }^{15}$ for the diaxial chair conformer of trans-1,2-di-t-butylcyclohexane and closely with the value of 17.4° found in the crystal structure ${ }^{9}$ of the diaxial trans-1,2-bis[(2-methoxycarbonyl)-2-propyl]cyclohexane ($\mathrm{CMe}_{2} \mathrm{CO}_{2} \mathrm{Me}$ analog), but is somewhat smaller than the 20.9° calculated (SFF) ${ }^{15}$ for axial t-butyl. cyclohexane and a value of 24.2° recently calculated (SFF) for $1-\alpha$ (axial)-t-butyl-transdecalin. 24

$$
\begin{array}{lr}
C(7)-C(8)-C(9)-N(1) & -175.9 \\
C(11)-C(8)-C(9)-C(10) & -78.4 \\
C(7)-C(8)-C(11)-C(12) & 157.4 \\
C(7)-C(8)-C(11)-C(14) & -81.0 \\
C(9)-C(8)-C(11)-C(13) & 170.4 \\
C(9)-C(8)-C(11)-C(14) & 47.4 \\
N(1)-C(9)-C(10)-C(5) & 176.3 \\
C(8)-C(9)-C(10)-C(4) & -174.5
\end{array}
$$

Figure 2

Figure 3

Further relief from steric crowding is accomplished by opening of the exocyclic valency angles at $C(8)$ to 121.6° and 115.8°, with concomitant diminution of the endocyclic valency angle [at $C(8)]$ to 104.4°, and by enlargement of the $C(14)-C(q u a t e r n a r y)-C(r i n g)$ valency angle ${ }^{17}$ to 115.7° with corresponding reduction of the $C(12)-C(q u a t e r n a r y)-C(13)$ valency angle to 104.9°. Such large valency angle deformations are normally not found in cases ${ }^{18-22}$ where the t-butyl group is equatorial. However, the $C(r i n g)-C$ (quaternary) bond length of 1.564 A , while longer than the normal $C\left(s p^{3}\right)-C\left(s p^{3}\right)$ distance ${ }^{23}$ of 1.537 A , is comparable to values predicted (SFF) ${ }^{15}$ and observed ${ }^{18-22}$ for rings bearing equatorial t-butyl groups. of note also is the large endocyclic valency angle at $C(9)\left(118.1^{\circ}\right)$; the mean carbon-carbon bond length (1.526 A) and the mean endocyclic valency angle at carbon (111.2 ${ }^{\circ}$) are normal.

Interestingly, the deformation in l_{2} appears to be substantially different from that in the previously studied ${ }^{10}$ 2-t-butylalkylidenecyclohexane in which strain is mainly relieyed by flattening of the ring and outward bending of the t-butyl group plus lengthening of the $C_{\text {ring }}{ }^{-}$ $\hat{C}_{\text {quat }}$ and shortening of the $C_{\text {quat }}-C_{\text {Me }}$ bonds. This may in part be a reflection of the much greater deformability of the alkylidenecyclohexane structure as compared to ${\underset{\sim}{l}}_{1}$ plus a low stretching force constant in the allylic bond.

Acknowledgements: We are grateful to Dr. F.ll. Vierhapper, University of Vienna, Austria for a gift of 8β-t-butyl-trans-decahydroquinoline. Host of the computer programs used in the analysis were written by Professor A.T. McPhail, Duke University, Durham, NC. Professor Derek Hodyson of this Department assisted in the collection of the data. This work was supported under NSF grant CHE75-20052.

References and Footnotes

i. S. Winstein and N.J. Holness, J.Am.Chem.Soc., 77, 5552 (1955).
2. N.L. Allinger and L.A. Freiberg, J.Am.Chem.Soc., 82, 2393 (1960).
3. J.D. Remijnse, H. van Bekkum and B.M. Wepster, Recl.Trav.Chim.Pays-Bas, 93, 93 (1974).
4. H. van Bekkum, M.A. Hoefnagel, h. de Lavieter, A. van Veen, P.E. Verkade, A. Wemmers, B.M. Wepster, J.H. Palm, L. Schafer, H. Dekker, C. Mosselman and G. Somsen, Recl.Trav. Chim.Pays-Bas, 86, 1363 (1967).
5. H. van Bekkum, H.M.A. Buurmans, G. van Minnen-Pathuis and B.M. Wepster, Recl.Trav.Chim. Pays-Bas, 88, 779 (1969).
6. H. Kessler, V. Gusowski and M. Hanack, Tetrahedron Lett., 4665 (1968); see also A. Rieker and H. Kessler, ibid., 1227 (1969), footnote 10.
7. B. van de Graaf, H. van Bekkum, H. van Koningsveld, A. Sinnema, A. van Veen, B.M. Wepster and A.M. van Wijk, Recl.Trav.Chim.Pays-Bas, 93, 135 (1974).
8. E.L. Eliel and M.C. Knoeber, J.Am.Chem.Soc., 88, 5347 (1966); 90, 3444 (1968).
9. H. van Koningsveld, Acta Cryst. B29, 1214 (1973).
10. F. Johnson, S.W. Z7to, R. Sarma and B.M. McKeever, Tetrahedron Lett., 753 (1978).
11. F.W. Vierhapper and E.L. Eliel, J.Org.Chem., in press (1979).
12. P.W.R. Corfield, R.J. Doedens and J.A. Ibers, Inorg.Chem., $\underline{6}, 197$ (1967).
13. P. Main, M.M. Wolfson, L. Lessinger, G. Germain and J.-P. Declerc, MuLTAN 76, a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England and Louvain, Belgium, 1976.
14. Hydrogen atoms were located in a difference-Fqurier synthesis. Hydrogen atom isotropic thermal parameters were held constant at B3. $2 \AA^{2}$.
15. B. van de Graaf, J.M.A. Baas and B.M. Wepster, Rec l.Trav.Chim.Pays-Bas, 97, 268 (1978).
16. H.R. Buys and H.J. Geise, Tetrahedron Lett., 2991 (1970).
17. $C(14)$ is the methyl group extending over the ring.
18. K.D. Hargrave, Ph.D. Dissertation, Duke University, Durham, NC, 1977.
19. A.T. McPhail, P.A. Luhan, S.I. Featherman and L.D. Quin, J.Am.Chem.Soc., 94, 2126 (1972).
20. H. van Koningsveld, Acta Cryst., B28, 1189 (1972).
21. P.L. Johnson, J.P. Schaefer, V.J. James and J.F. McConnell, Tetrahedron, 28, 2901 (1972).
22. P.L. Johnson, C.J. Cheer, J.P. Schaefer, V.J. James and F.H. Moore, Tetrahedron, 28, 2893 (1972).
23. Chem.Soc.Special Publication No. 11, 1958; No. 18, 1965.
24. B. van de Graaf, personal communication.

